- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources4
- Resource Type
-
0000000004000000
- More
- Availability
-
40
- Author / Contributor
- Filter by Author / Creator
-
-
Ditto, Jeffrey (3)
-
Johnson, David C. (3)
-
Moore, Daniel B. (3)
-
Hamann, Danielle M. (2)
-
Merrill, Devin R. (2)
-
Basyildiz, Bora (1)
-
Bauers, Sage R. (1)
-
Clark, Kyle (1)
-
Esters, Marco (1)
-
Gong, Zhexuan (1)
-
Jameson, Casey (1)
-
Lygo, Alexander C. (1)
-
Medlin, Douglas (1)
-
Miller, Aaron M. (1)
-
Moore, Daniel (1)
-
Orlowicz, Jacob (1)
-
Sutherland, Duncan R. (1)
-
Wood, Suzannah R. (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
- Filter by Editor
-
-
null (1)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract The speed limit of quantum state transfer (QST) in a system of interacting particles is not only important for quantum information processing, but also directly linked to Lieb–Robinson-type bounds that are crucial for understanding various aspects of quantum many-body physics. For strongly long-range interacting systems such as a fully-connected quantum computer, such a speed limit is still unknown. Here we develop a new quantum brachistochrone method that can incorporate inequality constraints on the Hamiltonian. This method allows us to prove an exactly tight bound on the speed of QST on a subclass of Hamiltonians experimentally realizable by a fully-connected quantum computer.more » « less
-
Hamann, Danielle M.; Bauers, Sage R.; Miller, Aaron M.; Ditto, Jeffrey; Moore, Daniel B.; Johnson, David C. (, Inorganic Chemistry)null (Ed.)
-
Sutherland, Duncan R.; Merrill, Devin R.; Ditto, Jeffrey; Moore, Daniel B.; Medlin, Douglas; Johnson, David C. (, Journal of the American Chemical Society)
-
Lygo, Alexander C.; Hamann, Danielle M.; Moore, Daniel B.; Merrill, Devin R.; Ditto, Jeffrey; Esters, Marco; Orlowicz, Jacob; Wood, Suzannah R.; Johnson, David C. (, Journal of the American Chemical Society)
An official website of the United States government
